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ABSTRACT

The analysis of dispersion

characte~isLics of transient signal

in microstrip lines with anisotropic

substrate is developed here, with

particular attention directed toward

the effects of arbitrary orientations

of the principal optical axis in

anisotropic substrates. Numerical

simulations are carried out for the

propagation of transient signals ,

square or Guassian pulses, along

microstrips with anisot.ropic

substrates. It is shown that the

dispersion characteristics is

substantially affected by the change

of the orientation angle of the

principal optical axis in the

substrate.

x. INTRODUCTION

With the development of MIC and MMIG

techniques, anisotropic materials such

as GaAs and sapphire have been used as

substrates in many microwave and

millimeter wave components. Effects of

substrate anisotropy on the dispersion

characteristics of transient signals in

transmission 1 i nes have attracted

considerable attention in tihe past.

However, so far the simulation of the

evolution of the transient signal,

square or Gaussian pulses, propagating

on microstrips has not been completely

performed when the principal optical

axis of anisotropic substrates is

arbitrarily oriented. In this paper, we

try to develop a method to treat the

problem with miwocomputer. To this end,

the numerical simulation is carried out
alternatively in both time domain and
frequency domain, and a modified 2D
FD-TD method is proposed. At first, the
transient signal at the initial position

z@ is transformed into frequency

domain, then the phase shift from

initial position to zal is calculated

for all major frequency components, and
by taking the inverse transform the time

domain representation of the transient

signal at 2=1 is finally obtained. It
should be noted that the eigenvalue

problem is solved in time domain with
the modified 2D FD-TD method where the
Maxwell’s equation is expressed by a set

*
of difference equations about D , T

+ *
and H

*
rather than about E and R

, as commonly used. The formulation
will be given in section II and the
results of’ numerical simulations in

section III. It is shown that the
distortion of transient signals
propagating along microstrip Lines is
substantially affected by the change of

orientation angle Or principal optical
axis in the substrate.

II. FORMULATION

For simplicity, the materials, both
Nl@tal and dielectric, are assumed to be

losSleSS and the metal stpips to be
zero-Lhickness in present analysis. The
geometry of substrates under
consideration is shown in Fig.1. The
dielectric substrate Is generally
expressed by a permittivity tensor
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where co is the permittivity in free

space.

Suppose a i.ransient signal, either

voltage or elecLric field, at the

initial position z=O can be represented

by

Vet>

{

-T/2<tST/2
V<t.,z=o>=

C2>
o elsewhere

In the frequency domain, the signal

can be written as V<O,Z=O>, where VcCD
and v<t> constitute a transform pair. At

the position of z=l the signal ( or

pulse > in the frequency domain becomes

Vccl,z=l) = V<O, z=O)exp[-.j(3<cDll <33

where f3<rJ is the phase constant and the

frequency-dependant attenuation constant

o.(m) is assumed negligible. By taking

the inverse transform of C2), the

representation of the pulse at the

position of z=l in time domain is

obtained and can be written as

V<t,z=l>

+@
=~~-mVCo,z=O}expf j[d.-fi{dll}d~ <4>

The phase constant (Kd can be expressed

in terms of effective dielectric

constant Creff<CJl,

(-Kd “ &c-If .5reff(GlJ

The expression VCW,Z=O>, the transform

of V<t,z=o>, can be easily obtained for

many common waveshapes, such as the

square and the Gaussian DC pulse or any

RF waves modulated by these two kinds of

pulses.

Many methods have been proposed to

determine the eigenvalue (3<0> or

‘reff <0) for microstrip. However , when

the principal axis of anisotropic

substrate is arbitrarily oriented, no

general treatment is available so far,

and in this paper we put forward a

modified 2D FD-TD method to approach

the problem.

The Maxwell’s equation is written as

where

Since the structure is uniform in

z-direction, the field components can be

expressed in the form

Hx = hx<x,y>exp<-.j(%)

‘Y
= hy<x,y>exp<-jglz>

Hz = jhzCx,y)exp<-.j(3z>

Dx = jdx<x,y>expC-.j@z>

Dy = .jdy<x,y>exp<-.j(%z>

Dz = dz<x,y>exp<-j(%z>

<8>

Ex = jex<x,y>expC-j@z>

Ey = jey<x,y>exp<-jpz>

Ez = ez(x,y>exp~-jlkz>

where P is the wavenumber in

z-direction. In this way, the

three-dimensional problem can be

simplified to a two-dimensional one, as

will be shown below.

Substituting C8> into <6> we obtain

ax/6t = c @5y-dez/*>/p

(Xly/& = C-pex+aezaz >/p

CxlzA?t = G3ex/dy-dey/i?x>/p
<9>

&ix/at = @hz/~ +@h
Y

ddy/at = -@hz/dx -f3hx

@dz/at = ahy/dx -axA5’y

Following Yee’s work[i], known as FD-TIl

method, each of these scalar equations

can be expressed in finite-difference

forms. With Yee’s nomenclature any

function of space C Z-dimensional in

khis paper > and time is discretized

FnCi,j)=FCiAx, jAy,nAt> <10>
where Ax=Ay=Al is the space increment

and At is the time one. By positioning

the components of d, e, and h on the
mesh as depicted in Fig.2 and evaluating

d, e, and h at alternate half time
steps, we obtain the components of

Maxwell’s equations

‘-1’2<i,j+l/2>+
hn+i/2ci,j+i/2>~hx

x

At/@pe~<i,j+l/2>-<e~<i, j+l>-e~<i,j)>/Ayl

<6a)
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‘-i’2(i+l/2, j)+hn+l/2<i+l/2,j)= hy
Y

At/@<e~Ci+l ,j) -e~<i,j>>/Ax-(3e~Ci+l/2, j>]

n-1/2<i+l/2, j+l/2>hn+l/2Ci+1/2, j+l/2)=hz
z

+At/p[e~Ci+l/2, j+l>-e~Ci+l/2, j>>/Ay

-Ce~<i+l,j+l/2>-e~(i, j+l/2>>/Axl

d~<i+l/2,.j> =d~-l<i+l/2,j>

n-i/2<i+~/2, j+i/2>‘-1’2<i+l., j>+hz+At [ @hy

_hn-i/2Ci+i/2, j-1/2))/A~l

z

d~<i,j+l/2>= d~-i<i,j+l/2>+

n-1/2<i+l/2, j+l/2>n-l~2c1,j+l/2>-<hz
At [ -(3hx

-hn-i/2<i-1/2, j+i/2>>/Axl
z

dn-l<i,j>+d~<i,j> = ~

~{hn-1/2 n-1/2(1-l/2,j> >/AX
Y

<i+l/2,j>-hy

ri-1/2<i,j-l/2>>/Ayl_<hn-1/2<i ,j+i/2>-hx
x

. . . . . . . . . . . . . . . . . . <111

where the stability factor s=cAt/Al, and

c is the velocity of light. In these

expressions, b and h are normalized such

that the characterititic impedance of

space is unity. The condition for

stability of <101 in free space is
[21

s Sm c 12>

So far, a space-time mesh has been

introduced and the Maxwell’s equations

have been replaced by a

finite-difference equations. In the

formulation of eigenvalue problems here,

only “hard boundaries” <usally

~epresented by perfectly conducting

walls> occur. At these boundaries, the

tangential electric and the norms 1

magnetic field components are maintained

at zero+ At the interface of dielectric

wifih air the tensor permittivity

described by

r +1)/2 /2 /2
‘xx ~xy ‘Xz

z=&. ‘yx ‘YY ‘=yz
& zx/2

‘ZY 1/2 Cczz+l>/z

To solve t,he system of equations

=
& is

(13>

Cll>

in this mesh, initial values must be

assigned f’irst. For rectangular-type

structure discussed in this paper, the

impulse function is an appropriate

choice for eigenvalues of bhe dominant

mode. As n increaces, the discrete time

functions of e and h fields evolve

towards the steady state which is the

characteristics of the desired mode in

the geometry. the final steady-state

field distribution may be calculated by

taking the time average of the time

domain solution at each mesh point. Thus

the steady-state solution is given by

F<io,jo)=~ FnCiO,.jolzN <14)
n

In eigenvalue problems, the

steady-state solution is a Lime-harmonic

function, from which the eigenvalues can

be extracted by discreke Foureir

transform,

n.
- >expC-j2rrsnflF~f> = ; F <lotJo c 15)

111- NUMERICAL SIMULATION RESULTS

In order to simulate the evolution of

transient signals propagating in

micrcxstrips, two kinds of temporal

waveforms, DC square and Gaussian

pulses, are examined. Two kinds of

widely used substrate materials <GaAs

and Sapphire> for microstirip lines are

considered in the numerical simulation.

For simplicity, the computation

restricted in t,he case where

principal optical axis of substrate

only oriented in x-y plane as shown

Fig. 1, and characterized by

orientation angle 6. In this case

tensor permittivity of the substrate

given by

is

the

is

in

the

the

is

[

‘xx ‘Xy
.%=.50

&yx ‘YY -1
C16>

1, ‘Zz J
where

‘x? cyand &Eare the diagonal

elements of tensor permittivity when the

optical axis coincides with x-axis,

i.e., 0=0.

In order to verify the algorithm to

compute the eigenvalue 13CiJ) <or areff)

with the modified 2D FD-TD method, the
characteristics

anisotropic

perviously in

of a microstrip with

substrate treated

[31 for -O are
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calculated. The obtained results agree

well with [31.

Fig.3 shows the dispersed output of DC

Gaussian pulse of width T=90ps for a

1. 27cm section of microstrip with a

sapphire substrate <CX=ll.6, ~y=&z=9-*’
for t,hree different orientation angles,

while Fig.4 shows those for a square

pulse of width T=l.29ns. For comparison,

the thickness of substrate and the width

of metal strip are chosen to be the same

as in [21. Evidently, the distortion is

quiLe pronounced when the orientation

angle is changed. The results are

valuable for the design of practical

devices, particularly, in mm-wave

frequency range.
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Fig. 1 The cross-section of shielded

microstrip
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Fig.2 Positions of

a difference
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Fig.3 Distortions or Gaussian pulse

microstrip <L=l.27cm, T=90ps>

..-— 0°

T<ns>

Fig.4 Distortions of square pulse in

microstrip CL=2.54cm, T=l.29ns>

in
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